Určete inverzní funkci f −1 (x) a její definiční obor:
\( f(x) = 2x + 3 \) inverse 2x + 3
\( f(x) = x^2, x \leq 0 \) inverse x^2
\( f (x) = x^2, x \geq 0, \) inverse x^2
\( f(x) = \sqrt{\frac{1 - x}{1 + x}}, x \neq -1 \) inverse sqrt((1 - x)/(1 + x)),
\( f(x) = \sqrt{1 − x^2} , −1 \leq x \leq 0 \) (sqrt(1 − x^2))^-1 , x=-1 to 0
\( f(x) = \sqrt{1 − x^2} , 0 \leq x \leq 1 \) sqrt(1 - x^2), (sqrt(1 − x^2))^-1 , x=0 to 1