display vzorec $$ a = 5 $$
ted zkusime inline: $ a = 5 $, ale mozna je default backslash a (zavorky): \( a = \sqrt{2} \)
Klasicka kvadraticka rovnice: \( x_{1,2} = \frac{-b \pm \sqrt{b^2-4ac} }{2a} \)
pm \( \pm \) plusminus
sqrt \( \sqrt{2} \) druha odmocnica
frac \( \frac{1 + x}{1 - x} \) zlomek
in, ni, notin, forall, exists \( \in \ni \notin \forall \exists \)
\( \arccos \cos \csc \exp \ker \limsup \min \sinh \arcsin \cosh \deg \gcd \lg \ln \Pr \sup \arct an \cot \det \hom \lim \log \sec \tan \arg \coth \dim \inf \liminf \max \sin \tanh \)
http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/Calculus.html
The expressions $$ \frac{du}{dt} and \frac{d^2 u}{dx^2} $$
are obtained in LaTeX by typing \frac{du}{dt} and \frac{d^2 u}{dx^2}
respectively.
The mathematical symbol \(\partial\) is produced using \partial
.
Thus the Heat Equation $$ \frac{\partial u}{\partial t} = h^2 \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) $$ is obtained in LaTeX by typing
\frac{\partial u}{\partial t} = h^2 \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)
To obtain mathematical expressions such as $$ \lim_{x \to +\infty}, \inf_{x > s} and \sup_K $$ in displayed equations we type
\lim_{x \to +\infty}, \inf_{x > s} and \sup_K
respectively.
Thus to obtain
$$ \lim_{x \to +\infty} \frac{3x^2 +7x^3}{x^2 +5x^4} = 3. $$
(in LaTeX) we type \lim_{x \to +\infty} \frac{3x^2 +7x^3}{x^2 +5x^4} = 3.
To obtain a summation sign such as $$ \sum_{i=1}^{2n} $$
we type \sum_{i=1}^{2n}
.
Thus $$ \sum_{k=1}^n k^2 = \frac{1}{2} n (n+1). $$ is obtained by typing
\sum_{k=1}^n k^2 = \frac{1}{2} n (n+1).