======mathjax====== display vzorec $$ a = 5 $$ ted zkusime inline: $ a = 5 $, ale mozna je default backslash a (zavorky): \( a = \sqrt{2} \) Klasicka kvadraticka rovnice: \( x_{1,2} = \frac{-b \pm \sqrt{b^2-4ac} }{2a} \) pm \( \pm \) plusminus sqrt \( \sqrt{2} \) druha odmocnica frac \( \frac{1 + x}{1 - x} \) zlomek in, ni, notin, forall, exists \( \in \ni \notin \forall \exists \) \( \arccos \cos \csc \exp \ker \limsup \min \sinh \arcsin \cosh \deg \gcd \lg \ln \Pr \sup \arct an \cot \det \hom \lim \log \sec \tan \arg \coth \dim \inf \liminf \max \sin \tanh \) ======Derivatives, Limits, Sums and Integrals====== http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/Calculus.html The expressions $$ \frac{du}{dt} and \frac{d^2 u}{dx^2} $$ are obtained in LaTeX by typing ''%%\frac{du}{dt} and \frac{d^2 u}{dx^2}%%'' respectively. The mathematical symbol \(\partial\) is produced using ''\partial''. Thus the Heat Equation $$ \frac{\partial u}{\partial t} = h^2 \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) $$ is obtained in LaTeX by typing \frac{\partial u}{\partial t} = h^2 \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) To obtain mathematical expressions such as $$ \lim_{x \to +\infty}, \inf_{x > s} and \sup_K $$ in displayed equations we type \lim_{x \to +\infty}, \inf_{x > s} and \sup_K respectively. Thus to obtain $$ \lim_{x \to +\infty} \frac{3x^2 +7x^3}{x^2 +5x^4} = 3. $$ (in LaTeX) we type ''%% \lim_{x \to +\infty} \frac{3x^2 +7x^3}{x^2 +5x^4} = 3.%%'' To obtain a summation sign such as $$ \sum_{i=1}^{2n} $$ we type ''%%\sum_{i=1}^{2n}%%''. Thus $$ \sum_{k=1}^n k^2 = \frac{1}{2} n (n+1). $$ is obtained by typing \sum_{k=1}^n k^2 = \frac{1}{2} n (n+1).