======T23====== Najděte primitivní funkce: =====293.===== \( \int \frac{dx}{x+a} , substituce u = x+a, du = 1dx \) [[wa>integrate dx / (x+a) ]] =====294.===== \( \int (2x − 3)^{10} \,dx , subtituce u = (2x - 3), du = 1/2 dx \) [[stepbystep#T294]] [[wa>integrate (2x - 3)^10 dx ]] =====295.===== \( \int \sqrt[3]{1 - 3x} \,dx \) [[wa>integrate cuberoot(1 - 3x) dx ]] [[stepbystep#T295]] =====296.===== \( \int \frac{ \,dx} { 4 + 9x^2 } \) [[wa>integrate 1 / (4 + 9x^2 ) dx ]] [[stepbystep#T296]] =====297.===== DELETEME \( \int (\sin 5x − \sin 5\alpha) \,dx \) [[wa> integrate sin 5x - sin 5a dx ]] =====298.===== DELETEME \( \int \frac{dx}{\sin^2 (2x + \frac{\pi}{4} } \) [[wa>integrate 1 / sin^2 (2x + pi/4) dx ]] =====299.===== \( \int \sin^2 x \,dx \) [[wa>integrate sin^2 x dx ]] mocninu sin^2 x stáhnout na sin/cos 2x a pak pou6ít subtituci [[stepbystep#T299]] =====300.===== DELETEME \( \int \frac{x \,dx}{ 3 − 2x^2} \) [[wa>integrate x / (3 - 2x^2) dx ]] =====301.===== \( \int \frac{x \,dx}{(1 + x^2)^2}, u = 1+x^2, du = 2x dx \) [[wa>integrate x / ( (1 + x^2)^2 ) dx ]] =====302.===== \( \int \frac{x \,dx}{4 + x^4} \) dvě substituce: u1 = x^2, pak u2 = u/2 \) druhá substituce [[derivace#arcsin|arctan x d/dx= 1/(1+x^2)]] [[wa> x / (4 + x^4) dx ]] [[stepbystep#T302]] =====303.===== DELETEME \( \int \frac{ \,dx }{ e^x + e^{−x} } \) [[wa>integrate 1 / (e^x + e^-x) dx ]] =====304.===== DELETEME \( \int \tan x \,dx \) [[wa>integrate tan x dx ]] =====305.===== DELETEME \( \int \cot x \,dx \) [[wa>integrate cot x dx ]] =====306.===== DELETEME \( \int \frac{cos^3 x}{\sin x} \,dx \) [[wa>integrate cos^3 x / sin x dx ]]