======T22====== Vyšetřete průběh funkcí a nakreslete jejich grafy: =====260.===== \( f(x) = \frac{x^3}{3 − x^2} \) =====261.===== \( f(x) = \frac{x^4}{x^3 − 2} \) =====255.===== \( f(x) = 1 + x^2 − \frac{x^4}{2} \) =====262.===== \( f(x) = \frac{x^2 (x − 1)}{(x + 1)^2} \) =====256.===== \( f(x) = (x + 1)(x − 2)^2 \) =====263.===== \( f(x) = \frac{x}{(1 − x^2 )^2 \) =====264.===== \( f(x) = \frac{x^4}{(x + 1)^3 \) =====265.===== \( f(x) = (\frac{1+x}{1−x})^4 \) =====259.===== \( f(x) = \frac{x^2}{x^2 − 1} \) =====266.===== \( f(x) = \frac{x}{(1 + x)(1 - x)^2} \) =====252.===== \( f(x) = 3x − x^3 \) =====253.===== \( f(x) = (x^2 − 1)^3 \) =====254.===== \( f(x) = x^2 − 4|x| + 3 \) =====257.===== \( f(x) = \frac{x}{1 + x^2} \) =====258.===== \( f(x) = \frac{x^2}{x^2 - 1} \) =====267.===== \( f(x) = \frac{x^2 − 1}{x^2 − 5x + 6} \) =====280.===== \( f(x) = \frac{e^x}{x} \) =====268.===== \( f(x) = \frac{x^4 + 8}{x^3 + 1} \) =====281.===== \( f(x) = e^(2x−x^2) \) =====282.===== \( f(x) = \frac{e^x}{1 + x} \) =====269.===== \( f(x) = \frac{2 - x^2}{1 + x^4} \) =====270.===== \( f(x) = \frac{1}{x} + 4x^2 \) =====271.===== \( f(x) = x^2 + \frac{1}{x^2} \) =====272.===== \( f(x) = (x - 3)\sqrt{x} \) =====273.===== \( f(x) = \sqrt{8x^2 - x^4} \) =====283.===== \( f(x) = \frac{1}{e^x - 1} \) =====284.===== \( f(x) = x + e^−x \) =====285.===== \( f(x) = \sqrt{x} \ln x \) =====286.===== \( f(x) = \frac{\ln x}{\sqrt{x}} \) =====287.===== \( f(x) = x^2 ln^2 x \) =====274.===== \( f(x) = \frac{x - 2}{\sqrt{x^2 + 1} \) =====288.===== \( f(x) = \ln(x^2 + 1) \) =====275.===== \( f(x) = \sin x + \cos^2 x \) =====289.===== \( f(x) = x − \ln(x + 1) \) =====276.===== \( f(x) = x + \sin x \) =====290.===== \( f(x) = x + \frac{\ln x}{x} \) =====277.===== \( f(x) = 2x − \tg x \) =====278.===== \( f(x) = x^2 e^−x \) =====291.===== \( f(x) = \ln \cos x \) =====279.===== \( f(x) = xe^−x \) =====292.===== \( f(x) = x + \atan x \)